Goto

Collaborating Authors

 Beaverton


Sr. Data Engineer, Big Data at Lucid Motors - Beaverton, OR

#artificialintelligence

Find open roles in Artificial Intelligence (AI), Machine Learning (ML), Natural Language Processing (NLP), Computer Vision (CV), Data Engineering, Data Analytics, Big Data, and Data Science in general, filtered by job title or popular skill, toolset and products used.


Sr. ETL Engineer at Lucid Motors - Beaverton, OR

#artificialintelligence

Find open roles in Artificial Intelligence (AI), Machine Learning (ML), Natural Language Processing (NLP), Computer Vision (CV), Data Engineering, Data Analytics, Big Data, and Data Science in general, filtered by job title or popular skill, toolset and products used.


Product Owner, Data Engineering at Lucid Motors - Beaverton, OR

#artificialintelligence

Find open roles in Artificial Intelligence (AI), Machine Learning (ML), Natural Language Processing (NLP), Computer Vision (CV), Data Engineering, Data Analytics, Big Data, and Data Science in general, filtered by job title or popular skill, toolset and products used.


Weight Space Probability Densities in Stochastic Learning: II. Transients and Basin Hopping Times

Neural Information Processing Systems

Genevieve B. Orr and Todd K. Leen Department of Computer Science and Engineering Oregon Graduate Institute of Science & Technology 19600 N.W. von Neumann Drive Beaverton, OR 97006-1999 Abstract In stochastic learning, weights are random variables whose time evolution is governed by a Markov process. We summarize the theory of the time evolution of P, and give graphical examples of the time evolution that contrast the behavior of stochastic learning with true gradient descent (batch learning). Finally, we use the formalism to obtain predictions of the time required for noise-induced hopping between basins of different optima. We compare the theoretical predictions with simulations of large ensembles of networks for simple problems in supervised and unsupervised learning. Despite the recent application of convergence theorems from stochastic approximation theoryto neural network learning (Oja 1982, White 1989) there remain outstanding questionsabout the search dynamics in stochastic learning.


Automatic Learning Rate Maximization by On-Line Estimation of the Hessian's Eigenvectors

Neural Information Processing Systems

Inst., 19600 NW vonNeumann Dr, Beaverton, OR 97006 Abstract We propose a very simple, and well principled way of computing the optimal step size in gradient descent algorithms. The online version is very efficient computationally, and is applicable to large backpropagation networks trained on large data sets. The main ingredient is a technique for estimating the principal eigenvalue(s) and eigenvector(s) of the objective function's second derivative matrix (Hessian),which does not require to even calculate the Hessian. Severalother applications of this technique are proposed for speeding up learning, or for eliminating useless parameters. 1 INTRODUCTION Choosing the appropriate learning rate, or step size, in a gradient descent procedure such as backpropagation, is simultaneously one of the most crucial and expertintensive partof neural-network learning. We propose a method for computing the best step size which is both well-principled, simple, very cheap computationally, and, most of all, applicable to online training with large networks and data sets.


English Alphabet Recognition with Telephone Speech

Neural Information Processing Systems

Mark Fanty, Ronald A. Cole and Krist Roginski Center for Spoken Language Understanding Oregon Graduate Institute of Science and Technology 19600 N.W. Von Neumann Dr., Beaverton, OR 97006 Abstract A recognition system is reported which recognizes names spelled over the telephone with brief pauses between letters. The system uses separate neural networks to locate segment boundaries and classify letters. The letter scores are then used to search a database of names to find the best scoring name. The speaker-independent classification rate for spoken letters is89%. The system retrieves the correct name, spelled with pauses between letters, 91 % of the time from a database of 50,000 names. 1 INTRODUCTION The English alphabet is difficult to recognize automatically because many letters sound alike; e.g., BID, PIT, VIZ and F IS.


The Connectivity Analysis of Simple Association

Neural Information Processing Systems

The Connectivity Analysis of Simple Association - or-How Many Connections Do You Need! Oregon Graduate Center, Beaverton, OR 97006 ABSTRACT The efficient realization, using current silicon technology, of Very Large Connection Networks (VLCN) with more than a billion connections requires that these networks exhibit a high degree of communication locality. Real neural networks exhibit significant locality, yet most connectionist/neural network models have little. In this paper, the connectivity requirements of a simple associative network are analyzed using communication theory. Several techniques based on communication theory are presented that improve the robustness of the network in the face of sparse, local interconnect structures. Also discussed are some potential problems when information is distributed too widely. INTRODUCTION Connectionist/neural network researchers are learning to program networks that exhibit a broad range of cognitive behavior.


The Connectivity Analysis of Simple Association

Neural Information Processing Systems

The Connectivity Analysis of Simple Association - or-How Many Connections Do You Need! Oregon Graduate Center, Beaverton, OR 97006 ABSTRACT The efficient realization, using current silicon technology, of Very Large Connection Networks (VLCN) with more than a billion connections requires that these networks exhibit a high degree of communication locality. Real neural networks exhibit significant locality, yet most connectionist/neural network models have little. In this paper, the connectivity requirements of a simple associative network are analyzed using communication theory. Several techniques based on communication theory are presented that improve the robustness of the network in the face of sparse, local interconnect structures. Also discussed are some potential problems when information is distributed too widely. INTRODUCTION Connectionist/neural network researchers are learning to program networks that exhibit a broad range of cognitive behavior.


The Connectivity Analysis of Simple Association

Neural Information Processing Systems

Oregon Graduate Center, Beaverton, OR 97006 ABSTRACT The efficient realization, using current silicon technology, of Very Large Connection Networks (VLCN) with more than a billion connections requires that these networks exhibit a high degree of communication locality. Real neural networks exhibit significant locality, yet most connectionist/neural network models have little. In this paper, the connectivity requirements of a simple associative network are analyzed using communication theory. Several techniques based on communication theory are presented that improve the robustness ofthe network in the face of sparse, local interconnect structures. Also discussed are some potential problems when information is distributed too widely. INTRODUCTION Connectionist/neural network researchers are learning to program networks that exhibit a broad range of cognitive behavior.


Starting a Knowledge Engineering Project: A Step-By-Step Approach

AI Magazine

Getting started on a new knowledge engineering project is a difficult and challenging task, even for those who have done it before. For those who haven't, the task can often prove impossible. One reason is that the requirements-oriented methods and intuitions learned in the development of other types of software do not carry over well to the knowledge engineering task. Another reason is that methodologies for developing expert systems by extracting, representing, and manipulating an expert's knowledge have been slow in coming. At Tektronix, we have been using step-by-step approach to prototyping expert systems for over two years now. The primary features of this approach are that it gives software engineers who do not know knowledge engineering an easy place to start, and that it proceeds in a step-by-step fashion from initiation to implementation without inducing conceptual bottlenecks into the development process. This methodology has helped us collect the knowledge necessary to implement several prototype knowledge-based systems, including a troubleshooting assistant for the Tektronix FG-502 function generator and an operator's assistant for a wave solder machine.